Tunable plasmon modes in single silver nanowire optical antennas characterized by far-field microscope polarization spectroscopy.
نویسندگان
چکیده
Performing far-field microscope polarization spectroscopy and finite element method simulations, we investigated experimentally and theoretically the surface plasmon modes in single Ag nanowire antennas. Our results show that the surface plasmon resonances in the single Ag nanowire antenna can be tuned from the dipole plasmon mode to a higher order plasmon mode, which would result in the emission with different intensities and polarization states, for the semiconductor quantum dots coupled to the nanowire antenna. The fluorescence polarization is changed with different polarized excitation of the 800 nm light beam, while it remains parallel to the Ag nanowire axis at the 400 nm excitation. The 800 nm incident light interacts nonresonantly with the dipole plasmon mode with the polarized excitation parallel to the Ag nanowire axis, while it excites a higher order plasmon mode with the perpendicular excitation. Under excitation of 400 nm, either the parallel or perpendicular excitation can only result in a dipole plasmon mode. In addition, we demonstrate that the single Ag nanowire antenna can work as an energy concentrator for enhancing the two-photon excited fluorescence of semiconductor quantum dots.
منابع مشابه
Rainbow radiating single-crystal Ag nanowire nanoantenna.
Optical antennas interface an object with optical radiation and boost the absorption and emission of light by the objects through the antenna modes. It has been much desired to enhance both excitation and emission processes of the quantum emitters as well as to interface multiwavelength channels for many nano-optical applications. Here we report the experimental implementation of an optical ant...
متن کاملRouting of surface plasmons in silver nanowire networks controlled by polarization and coating.
Controllable propagation of electromagnetic energy in plasmonic nanowaveguides is of great importance for building nanophotonic circuits. Here, we studied the routing of surface plasmons in silver nanowire structures by combining experiments and electromagnetic simulations. The superposition of different plasmon modes results in the tunable near field patterns of surface plasmons on the nanowir...
متن کاملSilver nanowires as receiving-radiating nanoantennas in plasmon-enhanced up-conversion processes.
We demonstrate efficient coupling between plasmons in a single silver nanowire and nanocrystals doped with rare earth ions, α-NaYF4:Er(3+)/Yb(3+). Plasmonic interaction results in a sevenfold increase of the up-converted emission of nanocrystals located in the vicinity of the nanowires as well as much faster luminescence decays. The enhancement of the emission can be precisely controlled by the...
متن کاملPlasmonic optical properties of a single gold nano-rod.
Polarization-contrast microscopy coupled with an atomic force microscope is utilized to attain far-field optical images of the multipolar surface plasmon resonance (SPR) modes of single gold nano-rod. Modulated standing modes resulted from the interference of longitudinal SPR modes and incident light are observed and studied. By counting the average distance of adjacent beats on this single gol...
متن کاملOptical scattering resonances of single and coupled dimer plasmonic nanoantennas.
The optical resonances of individual plasmonic dimer antennas are investigated using confocal darkfield spectroscopy. Experiments on an array of antennas with varying arm lengths and interparticle gap sizes show large spectral shifts of the plasmon modes due to a combination of geometrical resonances and plasmon hybridization. The resonances of the coupled-dimer antennas are considerably broade...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 6 15 شماره
صفحات -
تاریخ انتشار 2014